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Abstract 

Agriculture is one of the key drivers and victims of climate change. Climate-resilient agriculture 

is therefore vital for achieving enhanced food security—which is a crucial component of the 

sustainable development goals (SDGs). This paper provides answers to questions that are 

prerequisite for policies that address agriculture and climate change. We analyze the 

determinants of global average crop production for maize, wheat, rice, and soybeans over the 

period 1961–2013. We find strong and statistically significant supply elasticities for all four 

crops with respect to own crop prices. Our results also underscore the relevance of output price 

volatility for the supply of these key global agricultural staple crops—especially on production 

of wheat and maize. Comparing the standardized effect sizes of own price and price volatility 

estimates, the effects are on par for wheat production while the price volatility effect is only a 

fifth of the own price effect on maize production. In agreement with previous studies, we also 

find that climate change has significant adverse effects on production of the world’s key staple 

crops. More importantly, this study finds that weather extremes—both in terms of temperature 

and precipitation shocks— during the growing months have significant adverse impacts on the 

production of the abovementioned food crops. Price and weather extremes do not only adversely 

affect average global food production, they also positively contribute to the year-to-year 

fluctuations of food availability. Thus, combating climate change using both mitigation and 

adaptation technologies is crucial for global production and hence food security. 
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1. Introduction 

Food insecurity remains to be a critical challenge to the world’s poor today. According to recent 

estimates by the Food and Agriculture Organization of the United Nations (FAO) one in nine 

people in the world and about a quarter of those in sub-Saharan Africa are unable to meet their 

dietary energy requirements in 2014-15 (FAO 2015). The focus of this study is not food 

insecurity and hunger per se. It instead addresses one major component of food security, that is, 

food production. Although a range of factors influence global food security (FAO, 1996), cereal 

production plays a major role  (Parry et al., 2009). In this paper, we seek to empirically evaluate 

the impacts of population growth, changes in climate and weather extremes, and price changes 

on global food production. This paper estimates global average effects of climate change and 

other variables on production of the world’s principal staple crops, namely wheat, rice, maize, 

and corn. These crops are crucial for the fight against global food insecurity since they are major 

sources of food in several parts of the world, comprising three-quarter of the food calories in 

global food production (Roberts & Schlenker, 2009). Maize, wheat, and rice, respectively, are 

the three largest cereal crops cultivated around the world. According to data from FAO (2012), 

they make up more than 75% and 85% of global cereal area and production in 2010, 

respectively. About one-third, of both the global area and production, of total oil crops is 

attributed to soybeans. Our analysis pools data from 31 major crop producer countries or regions 

for the 1961–2013 period. The study regions account for greater than 90% of global production 

of each of these crops in any year since 1991.  

Tackling against food insecurity and hunger is a more difficult task in the face of rising global 

population, climate change, and high and volatile food prices. Increasing global population, 

which is projected to reach almost 10 billion in 2050, entails that more food needs to be 

produced. From the demand perspective rising global population makes food insecurity more 

challenging. Population growth and the subsequent urbanization compete for land with food 

production, whereas with growing population come more labor and technology that potentially 

boost food production. The second factor is the threat to food insecurity brought about by climate 

change and weather extremes. Under a business as usual scenario climate change may increase 

child stunting by about a quarter in Sub-Saharan and by nearly two-thirds in South Asia by 2050 

(Lloyd et al., 2011). The other factor contributing to problems of food insecurity and hunger is 



3 
 

an increase in the level and volatility of food prices. In fact, rising population and climate change 

are the major causes of high and volatile food prices (von Braun & Tadesse, 2012). Policy 

responses towards climate change and population growth will therefore directly affect price 

changes. 

Considering these key drivers of food insecurity simultaneously to estimate their impact on 

global food production is our key contribution to the literature. Previous studies that have 

addressed a similar research question can be grouped in to three: studies that address impact on 

crop production of 1) climate change only, 2) price changes only, and 3) climate and price 

change. The first strand of studies considers crop production to be a technical relationship 

between yield per hectare and climate change variables and fail to account for the potential for 

farmers to adapt to climatic changes through adjustments in area allocation, input use, crop 

choice, and other agronomic practices. The studies that investigate crop production using 

economic variables (input and output price changes) without considering climate change 

implicitly assume that the effect of climate variables can be fully captured by economic 

variables. Although farmers respond to climate changes through adjustments to their price 

expectations – thereby adjusting acreage or input use, not all climate and weather variations are 

predictable in advance such that farmers respond appropriately. The third group of studies—

including the present study—investigates the impact of not only climate variables but also 

economic variables on crop production.  

This article differs from the literature, especially from those in the last group mentioned above, 

in terms of both the level of aggregation employed for the dependent variable and the proxy used 

for expected prices. More importantly, we investigate the effect on production variance of 

changes in both weather and price fluctuations. Key findings of this study indicate that 

population density has a non-linear effect on the production of all crops. As expected crop 

production responds positively to increasing prices – elasticity ranging between 0.2 for wheat to 

about 1.0 for rice – but negatively to own crop price volatility. With respect to climate variables, 

increasing mean growing season temperature does not seem to be the major problem for crop 

production. Instead, rising temperature becomes a problem to crop production after some critical 

level, indicating the commonly found bell-shaped relationship. In the case of soybean 

production, for instance, an increase in growing season temperature turns out to have statistically 

significant and negative impact on soybean production beyond 32.6 degrees. The results also 

highlight that seasonal temperature variations have negative effects on crop production. 

Although production fluctuation of all crops has a decreasing trend over time, it increases with 

both price and weather extremes. 

2. Theoretical framework 

This section discusses the channels though which our key variables of interest affect global food 

production. Models of supply response of a crop can be formulated in terms of output, area, or 
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yield response. According to Just and Pope (1978, 1979), the mean and variance of production 

can be estimated from a stochastic production function of the type: 

(1)       𝑄𝑖𝑡 = 𝑓(𝑋𝑖𝑡, 𝜑) + ℎ𝑖𝑡(𝑋𝑖𝑡, 𝜙)𝜀𝑖𝑡 

where 𝑄𝑖𝑡 denotes crop production of country 𝑖 in period 𝑡; 𝑋𝑖𝑡 is vector of climate and price 

change variables;  𝑓(. ) and ℎ𝑖𝑡(. ) are the deterministic and stochastic components of the 

production function respectively; 𝜑 and 𝜙 are vectors of parameters to be estimated; and 𝜀𝑖𝑡 is a 

random error with zero mean and constant or unitary variance.  

The stochastic production function given by equation (1) can be expressed for a certain crop in 

an explicit form with heteroskedastic errors that allow for the estimation of variance effects as 

(2)       𝑄𝑖𝑡 = 𝑓(𝑋𝑖𝑡, 𝜑) + 𝑢𝑖𝑡      𝐸(𝑢𝑖𝑡) = 0, 𝐸(𝑢𝑖𝑡𝑢𝑖𝑠) = 0, for  𝑖 ≠ 𝑠 

(3)      𝐸(𝑢𝑖𝑡
2) = 𝑒𝑥𝑝 [𝑊𝑖𝑡

′ 𝜙]  

The first stage in evaluating the effect of explanatory variables on crop production involves 

estimation of Equation (2) with heteroskedastic disturbances. The residuals from this stage can 

be used to estimate the marginal effects of variables determining production variance. The 

vectors of independent variables (𝑋 and 𝑊) in the two stages can be the same or different. In this 

study, we include all climate and weather change; price and price volatility; and population 

density variables in the first stage, whereas the second stage includes variables that capture short-

term climate and price change variables (weather extremes and price volatility).      

Climate and weather extremes  

The impact of climate change on crop production has been widely studied (IPCC, 2001, 2007). 

Changes in climate and weather affect crop production in several ways. High temperature can 

reduce critical growth periods of crops; promote crop disease; and increase sensitivity of crops to 

insect pests, thereby affecting crop development and potential yield (CCSP, 2008; Jones & 

Yosef, 2015). Growing period temperature that exceeds a certain threshold level can damage 

reproductive tissues of plants and also increase pollen sterility (Roberts & Schlenker, 2009; 

Thornton & Cramer, 2012). Furthermore temperature variability can affect crop production 

through yield losses (McCarl et al., 2008). These authors also indicate that climate change 

affects not only the mean of crop production but also its variability.  

The other climate change variable that affects crop production is precipitation. Low rainfall in 

arid and semi-arid regions dictates the formation of shallow soils, which are poor in organic 

matter and nutrients. Inter- and intra-annual variability in rainfall is a key climatic element that 

determines the success of agriculture in many countries (Sivakumar et al., 2005). Some empirical 

evidence shows that the effect on year-to-year variability of crop production of precipitation is 

larger than that of temperature (Lobell & Burke, 2008). Low or excessive rainfall can affect crop 

production both through yield and acreage effects. Farmers will adjust their acreage allocation to 
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a crop depending on – onset and magnitude of –planting time rainfall (Sacks et al., 2010). It is 

therefore important to control for both planting and growing period mean precipitation and for 

standardized precipitation anomaly index (SPAI) in these seasons. The literature suggests that 

the relationship between crop yield and climate and weather variables is better represented by a 

bell-shaped curve (Shaw, 1964). The definitions and measurements of these variables are given 

in subsequent sections.  

 

 

Price change and volatility  

Higher output prices are typically expected to bring about a positive supply response in which 

producers allocate more land to the agricultural sector and increase investment to improve yield 

growth (OECD, 2008). Although conceptually higher prices may also lead to expansion of 

acreage under cultivation of a crop to a less fertile land, and hence reducing yield, several 

empirical studies have shown that the positive effect outweighs (Haile et al., 2016; Miao et al., 

2016). Crop price volatility, on the other hand, acts as a disincentive for crop production because 

it introduces output price risk. Price risk has detrimental implications for producers’ resource 

allocation and investment decisions (Moschini & Hennessy, 2001; Sandmo, 1971). This is 

especially true for agricultural producers in developing countries as they are often unable to deal 

with (Binswanger & Rosenzweig, 1986) and are unprotected from (Miranda & Helmberger, 

1988) the consequences of price volatility. 

The farmer has to make his optimal crop production decision subject to output prices, which are 

not known at the time when planting and input-use decisions are made. Thus, expected rather 

than observed output prices are used for decision making. The literature hints that a farmer may 

choose to cultivate a different crop at planting time if new and relevant information is obtained 

(Just & Pope, 2001). Therefore, it is worthwhile to consider price, price risk, and other 

information during the planting season to model price expectations of farmers. Input prices may 

also affect crop production through their effects both on yield and on acreage. For a farmer who 

produces a single crop, an increase in input prices, for instance fertilizer prices, discourages 

application of inputs and therefore unambiguously reduces crop production. However, in the case 

of multiple crop production higher input prices may induce a farmer to shift his input application 

to a crop that requires less of that input. Moreover, farmers may also substitute other inputs, such 

as land, for fertilizer if the latter gets more expensive. The effect of input prices on production is 

therefore an empirical question. We also include population density and its squared term for two 

reasons. On the one hand, population density can serve as a proxy for wages or physical labor. 

Similar to the explanation for fertilizer, the effect on crop production of availability of cheaper 

labor is ambiguous. Population density also serves as a proxy for urbanization and possible land 

degradation, both of which have negative impacts on crop production. The net effect of 
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population density on crop production therefore depends on the relative magnitude of these 

effects on yield and acreage.  

It is worth to mention here that we use international crop prices to proxy farmers’ anticipated 

prices in each country; in other words, we estimate crop production response to changes in world 

prices rather than to specific domestic prices. These two supply response estimates—responses 

to domestic or world prices—are identical under the assumption of complete price transmission 

from international markets to domestic markets. In the case of incomplete price transmission, 

however, our estimates should be interpreted as average production response to country-and 

crop-calendar specific global price changes and volatility.
1 

 

3. Empirical framework 

Given the above theoretical framework, we model the country-specific average production of 

crop 𝑐 in country 𝑖 and at time 𝑡 as 

(4)     𝑄𝑐𝑖𝑡 = 𝛼𝑐 + 𝜷𝑐𝑷𝑹𝑐𝑖𝑡 + 𝜸𝑐𝑪𝑳𝑐𝑖𝑡 + 𝜽𝒄𝑷𝑶𝑷𝑐𝑖𝑡 + 𝝀𝑐𝑻𝑐𝑖𝑡 + 𝜂𝑐𝑖 + 𝑢𝑐𝑖𝑡   

where 𝑄𝑐𝑖𝑡 denote production of crop 𝑐 ∈ (wheat, corn, soybeans, rice); 𝑷𝑹, 𝑪𝑳, 𝑷𝑶𝑷, and 𝑻 

denote vectors of variables measuring prices, climate change, population density, and time trend, 

respectively; 𝜂𝑐𝑖 denote country-fixed effects to control for time-invariant heterogeneity across 

countries, and 𝑢𝑖𝑐𝑡 is the disturbance term. While 𝛼𝑐 is the overall constant term, 𝜷𝑐, 𝜸𝑐, 𝜽𝒄, 𝝀𝑐, 

are vectors of parameters to be estimated. For the empirical estimation we include the 

logarithmic values of the dependent variable and output and fertilizer prices.  

The second stage involves estimating the variance component of the stochastic production 

function as  

(5)     𝑉𝑄𝑐𝑖𝑡 = 𝛼𝑐
′ + 𝑩𝑐𝑾𝑐𝑖𝑡 + 𝜆𝑐

′ 𝑻𝑐𝑖𝑡 + 𝜂𝑖𝑐
′ + 𝑒𝑐𝑖𝑡  

where 𝑉𝑄𝑐𝑖𝑡 is production variance of each crop; 𝑾𝑐𝑖𝑡 is a vector of weather and price volatility 

variables that potentially affect production variance (𝑩𝑐 is a vector of the respective parameters 

to be estimated); and 𝑒𝑐𝑖𝑡is an idiosyncratic error term. All remaining variables are as defined 

above, with the prime symbol indicating that estimated values can be different. Following Just 

and Pope (1978) and the theoretical model above, the logarithmic squared residuals (𝑙𝑛[�̂�𝑐𝑖𝑡
2]) 

from the mean production equation (4) can be used as a measure of production variance for the 

respective crop. Because we specify the mean equation in logarithm, we need to take the 

antilogarithm of the residuals before squaring them.  

The price vector 𝑷𝑹 in equation (4) includes input and output prices in levels and output price 

variability. The proxy for input prices is a fertilizer price index lagged by one-year and that 

contains world prices of natural phosphate rock, phosphate, potassium, and nitrogenous 

fertilizers. The output price refers to both prices of own crop at planting season and one-year 

lagged index of competing crop prices. The cross crop prices used for computing the index are 
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the other three crops that are not under consideration in a given specification. We weight prices 

of each crop by the calorie per metric ton content of each crop to compute the index.
2
 This vector 

also includes seasonal own crop price volatility to capture output price risk. In order to use the 

de-trended price series, we calculate own crop price variability—of the de-trended price series—

in the 12 months preceding the start of the planting season of each crop in each country. The 

climate vector 𝑪𝑳 in equation (4) includes mean temperature and squared deviation of maximum 

and minimum temperature values during growing periods of each crop. This enables us to 

capture the effects of seasonal changes in average and variance of temperature on crop 

production. To capture extreme (low or high) temperature effects, we further include average 

number of growing season frost days and dummy variables to capture if growing season 

temperature increases above a threshold temperature level above which crop growth is severely 

affected.
3
 Because the literature suggests that higher minimum (maximum) temperatures can lead 

to a reduction in rice (maize) yields (HLPE, 2012), we test for the effect of growing period 

minimum and maximum temperatures in rice and maize equations, respectively. For 

precipitation we include both planting and growing season mean precipitation along with their 

squared terms, anticipating an increase (a decline) in crop production with an increase in average 

(excessive) rainfall. In addition, we control for rainfall shock variables, which are squared 

deviations of current planting and growing season rainfall from the respective long run mean 

rainfall values and standardized by the respective historical standard deviations. These variables 

capture the effects of seasonal unexpected precipitation extremes such as droughts and flooding 

both on crop acreage and yield. In the weather vector 𝑾 of equation (5), we include some of the 

climate variables that potentially capture short-term temperature and precipitation changes, such 

as seasonal temperature variation and excessive precipitation measures as well as the variables 

that proxy for rainfall anomaly—that is, as measured by SPAI. The vector 𝑷𝑶𝑷 contains 

population density and its squared term to capture any non-linear effect of population growth as 

a proxy both to wage and to urbanization growth. The last vector 𝑻 in both the mean and 

variance equations contains country-specific linear and quadratic time trends to control for the 

effect of technological progress with the possibility of decreasing marginal return.  

We estimate a log-linear model of crop production allowing for heteroscedastic variance. This is 

appropriate since production of the crops follow log-normal distribution. The log-linear 

specification of production on climate change variables is also especially important in studies 

(such as the present study) that attempt to estimate the average impact of climate change on 

global crop production. In a log specification, a given change in a climate change variable results 

in the same percent impact on production (Lobell et al., 2011b). We use fixed effects (FE) model 

for our cross-country panel data, both for the mean and variance equations. First, the FE model 

controls for time-invariant heterogeneity across countries, such as soil quality and agroecology 

that would otherwise result in omitted variable bias. Employing FE model when both the linear 

and quadratic terms of climate change variables are included has additional merit. It uses both 

within- and between-country differences to estimate marginal impacts. Thus, the FE model with 

quadratic weather terms enables to capture adaptation mechanisms such as changing sowing date 
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or crop variety by allowing the marginal effect to vary with climate change (Lobell et al., 

2011b). Because we include input, own, and competing prices, this model also allows us to 

capture other forms of climate change adaptations such as switching crop or applying less or 

more inputs including labor and fertilizer.  

Because we use international prices to measure input and output prices as well as crop price 

volatility, these variables may be exogenous to crop production for a small country. Yet, large 

producers may influence international output and input prices in that year (through trade) and we 

therefore need to account for possible endogeneity of fertilizer prices as well as the level and 

volatility of crop prices. To this end, we apply the described FE panel data estimator while 

instrumenting all the price variables in each crop model. The literature suggests some potential 

instrument variables including lagged climate change and crop stock variables (Miao et al., 

2016; Roberts & Schlenker, 2013). We additionally use one-year lagged net-trade of each crop. 

Stock and net-trade for soybeans are not used because of missing data for several countries and 

years. These variables are theoretically valid IVs because they affect domestic crop production 

only through their effects on prices. Based on results of weak- and over-identification statistical 

tests different sets of the instrument variables are used in the different specifications.
4
  

Because the mean equation is specified with heteroscedastic variance, we need to account for 

this in order to obtain more precise or efficient estimates. We estimate the mean production 

model with two stage least squares (2SLS) that are both robust to arbitrary heteroscedasticity and 

intra-country correlations. There are more number of IVs than endogenous variables in our 

model, in other words the model is overidentified. In this case, a two-step general method of 

moments (GMM) IV estimator – with cluster-robust standard errors – yields more efficient 

estimates than 2SLS estimates (Baum et al., 2007). Thus, the IV-GMM estimator is our preferred 

method.   

4. Data and descriptive statistics 

We obtain production data for each of wheat, rice, maize, and soybeans for the period 1961-2013 

from FAO. We include country-level crop production data for 30 major producer countries and 

pooled production data for the 27 countries of the European Union (EU, as of 2010) as a single 

entity. Because we include four countries (Russian Federation, Ukraine, Kazakhstan, and 

Uzbekistan) from the former Soviet Union region, the minimum number of units in our panel 

data becomes 27. Although the period of analysis is the same across all four crops, the total 

number of observations in the panel data differs because some countries do not produce a certain 

crop. Yet, the focus countries and regions constitute about 82% for wheat, 90% for maize, 93% 

for rice, and 98% for soybeans of the global average production of each crop for the entire period 

of 53 years. We obtain country-level data on ending stock and trade for each crop from the 

Foreign Agricultural Service (FAS) of the US Department of Agriculture (USDA).  
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International market output prices and fertilizer index are obtained from the World Bank’s 

commodity price database. All prices are converted to real 2010 US dollar prices by deflating 

each price with Consumer Price Index (CPI) of the United States. We use crop calendar 

information to identify the major planting seasons of each country in order to construct country-

specific seasonal price and price variations. We obtain crop calendar information from the 

Global Information and Early Warning System (GIEWS) of the FAO for emerging and 

developing countries, whereas the Office of the Chief Economist (OCE) of the USDA provides 

such information for advanced economies. Six climate variables, mean precipitation, minimum, 

mean and maximum temperature, average number of wet and frost days (all in a monthly 

resolution) are obtained from the Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 

of the University of East Anglia. We constructed several climate change indicators from these 

six variables, including crop-specific seasonal mean and squared climate variables for each 

country. In case of the EU we constructed regional climate variables as an average value of the 

top five major producers of each crop using their respective cropland share as weights. Data on 

country-level population density, which refers to FAO and World Bank estimates of people per 

square km of land area, are obtained from the World Bank. The summary statistics of total crop 

production of crops and of all variables for maize production estimation are reported in table 1.
5
  

Table 1. Summary statistics of all crop production and production variance and of dataset for 

maize production analyses. 

Variables Mean SD Min Max 

Dependent variables 

Maize production (1000 mt) 15547.2 42629.0 0.1 353699.4 

Wheat production (1000 mt) 14303.6 26639.1 0.0 150341.0 

Soybean production (1000 mt) 4014.3 12810.1 0.0 91417.3 

Rice production (1000 mt) 15373.7 34802.4 0.0 205936.2 

Variance of maize production (log) 2.48e-04 1.59 -6.61 9.50 

Variance of wheat production (log) 6.77e-04 0.91 -5.44 4.22 

Variance of soybean production (log) -0.031 2.60 -8.54 7.21 

Variance of rice production (log) -2.29e-09 1.08 -8.24 4.61 

Independent variables 

Maize sowing prices ($/mt) 251.2 111.4 95.3 644.9 

Competing crop price index ($/mt)
a
 388.5 134.7 216.0 862.3 

Maize price volatility
 

0.10 0.03 0.0 0.20 

Fertilizer price index 66.7 34.4 33.8 196.9 

Population density (people/squared km)  112.6 163.3 1.4 1203.0 

Maximum growing temperature (°C) 28.6 4.7 9.3 37.1 

Mean growing temperature (°C) 23.0 4.6 4.7 30.0 

Squared sowing temperature deviation (°C) 357.9 225.7 42.3 1398.8 

Squared growing temperature deviation (°C) 269.0 146.7 56.3 718.2 

Growing cold stress (dummy var = 1 if < 10°C) 0.2 0.4 0.0 1.0 

Growing heat stress (dummy var = 1 if  >32°C) 0.3 0.5 0.0 1.0 
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Mean number of growing frost days 0.9 2.3 0.0 14.6 

Mean number of growing wet days 10.1 6.8 0.1 27.8 

Mean sowing precipitation (mm) 94.4 70.3 0.7 451.9 

Mean growing precipitation (mm) 110.3 80.2 1.3 368.9 

Sowing rainfall shock (mm) 522.3 1963.2 0.0 28457.8 

Growing rainfall shock (mm) 441.3 1166.1 0.0 13750.6 

Sowing rainfall anomaly (index) -0.00015 0.26 -2.24 2.40 

Growing rainfall anomaly (index) -0.00004 0.33 -1.26 1.46 

Notes: 
a
Prices of wheat, rice, and soybeans constitute the competing crop price index.  

We present the time series of global mean growing-season temperature and precipitation for all 

four crops in Fig. 1 from 1961 to 2013. The graph (qualitatively) shows an increasing trend in 

growing season temperature for all crops, whereas there is no clear trend in the average global 

precipitation (except a slight decline for wheat). A more formal statistical test of this qualitative 

illustration is given in table 2, where we test if there is any difference between global mean 

temperature and precipitation variables for the periods 1961-1986 and 1987-2013.  

  
Fig. 1. Global average trend of growing season mean temperature and precipitation of the four crops 

Table 2. Mean differences between aggregated mean trends of temperature and precipitation variables for 

the periods 1961-1986 and  1987-2013. 

Variable Mean difference  t-stat 

Mean growing temperature: (M) -0.519*** (-9.582) 

Mean growing temperature: (W) -0.560*** (-8.705) 

Mean growing temperature: (S) -0.523*** (-9.684) 

Mean growing temperature: (R) -0.517*** (-9.616) 

Mean growing precipitation: (M) -1.166 (-0.920) 
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Mean growing precipitation: (W) 0.823 (1.288) 

Mean growing precipitation: (S) -1.704 (-1.195) 

Mean growing precipitation: (R) -2.932* (-1.974) 

Mean sowing precipitation: (M) -2.203 (-0.027) 

Mean sowing precipitation: (W) 41.677 (0.981) 

Mean sowing precipitation: (S) -132.671 (-0.821) 

Mean sowing precipitation: (R) -80.038 (-1.047) 

N=53: N1 = 26, N2 = 27   

Notes: t-statistics in parentheses; * p<0.05, ** p<0.01, *** p<0.001;  

H0: (Mean of the variable during 1961-1986) - Mean of the variable during 1987-2013)=0; M = 

maize, W = wheat, S = soybeans, R = rice 

The test results confirm that global mean growing season temperature of all crops during 1987-

2013 is statistically higher than the corresponding mean values during the earlier 26 years. The 

mean growing season temperature increase (which is above 0.5 for each crop) is equivalent to a 

rate of about 0.18°C per decade. This is close to the per decade rate (0.2°C) of global warming 

expected over the next three decades (IPCC, 2007). On the other hand, global mean growing and 

sowing season precipitation and rainfall shock of nearly all crops (except a slight increase for 

rice at growing season) do not exhibit any statistically significant trend. Lobell et al. (2011a) 

reach to a similar conclusion that there is no consistent shift in the distribution across countries 

of precipitation trends between the periods 1960–1980 and 1980–2008 (p. 618).  

5. Results and discussions 

The estimation results for mean crop production are presented in tables 3–6 for maize, wheat, 

soybeans, and rice, respectively.
6
 In the first two models of each of these tables, we estimate the 

empirical model in equation (4) using country fixed-effects while assuming all variables 

(including price variables) as exogenous. As we see in tables 3–6, model FE’ includes price 

index of competing crops besides own crop price. Model specifications FEIV and FEIV’, on the 

other hand, are country-fixed effects panel data IV estimations that account for endogeneity of 

all input and output price-related variables. The last column reports standardized effect sizes of 

the FEIV’ estimation results to shed light on the relative importance of included explanatory 

variables, which are measured in various ways, on global supply response for each crop. The 

estimation results are qualitatively consistent across the four alternative models with a few 

exceptions.  

We test for the underlying assumptions for the validity of our IV estimation methods. The test 

for overidentification using the Hansen J statistic shows that we cannot reject the hypothesis that 

the IVs are valid at any reasonable significance level. We consider several tests, including 

Kleibergen-Paap rk statistics of the first-stage regression, to check if the IVs are strongly 

correlated with the endogenous variables. The joint F-test strongly rejects the null hypothesis 

that our IVs do not jointly statistically significantly explain the included endogenous variables at 

any reasonable level of significance. The test results also indicate that the excluded IVs pass the 
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Kleibergen-Paap (2006) rk tests for underidentification and weak instrument. The results from 

the country fixed-effects IV model can therefore be reliable. The following discussions rely on 

the results obtained from the panel data IV estimator that also includes cross-price index (that is, 

FEIV’) for each crop production estimation. Similarly, the estimation results for the stochastic 

component of crop production in table 5 use the predicted residuals from this model to construct 

the respective dependent variables.  

 

 

 

Table 3. Determinants of global maize production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 

 (rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Standardized 

effect size 

Own crop price 0.170*** 0.118*** 0.431*** 0.802*** 0.250*** 

 

(0.019) (0.016) (0.069) (0.086) 

 Cross-price index 

 

0.156*** 

 

-0.540*** -0.126*** 

 

 (0.032)  (0.163)  

Own price volatility -0.469** -0.673*** -2.184*** -2.190*** -0.046*** 

 

(0.199) (0.213) (0.496) (0.622) 

 Fertilizer price index  0.047** -0.002 -0.208*** -0.126* -0.035* 

 

(0.020) (0.019) (0.062) (0.067) 

 Population density  0.010** 0.001** 0.013*** 0.016*** 0.648*** 

 

(0.005) (0.005) (0.003) (0.004) 

 Population density squared -1.23e-05 -1.23e-05 -1.95e-05*** -2.46e-05*** -0.274*** 

 

(0.000) (0.000) (0.000) (0.000) 

 Mean growing tmp. 0.078 0.075 0.093* 0.117** 0.251** 

 

(0.093) (0.092) (0.055) (0.055) 

 Max. growing tmp. -0.099 -0.097 -0.116*** -0.140*** -0.295*** 

 

(0.080) (0.078) (0.037) (0.040) 

 Squared sowing tmp. deviation -0.0003*** -0.0003*** -0.0003*** -0.0003*** -0.070*** 

 

(0.0001) (0.0001) (0.000) (0.000) 

 Squared growing tmp. deviation -0.001* -0.001* -0.001*** -0.001** -0.051** 

 

(0.0005) (0.0005) (0.0001) (0.0003) 

 Mean growing rainfall 0.003*** 0.002*** 0.002*** 0.001*** 0.046*** 

 

(0.001) (0.001) (0.001) (0.001) 

 Sowing rainfall anomaly 0.025 0.038 0.083* 0.047 0.003 

 

(0.068) (0.064) (0.048) (0.073) 

 Growing rainfall anomaly -0.110*** -0.126*** -0.200*** -0.179*** -0.010*** 

 

(0.039) (0.040) (0.031) (0.050) 

 Linea trend 0.039*** 0.042*** 0.043*** 0.038*** 0.402*** 

 

(0.003) (0.004) (0.001) (0.002) 

 Quadratic trend -2.4e-04*** -2.7e-04*** -1.6e-04*** -1.1e-04*** -0.063*** 

 

(0.0001) (0.0001) (0.000) (0.000) 

 Observations 1488 1488 1330 1330 1330 

Underidentification test 

(Kleibergen-Paap rk Wald statistic)   427.85 280.82  

Weak identification test 

(Kleibergen-Paap rk Wald F 

statistic)           36.801 24.154  
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Overidentification test (p-value of 

Hansen J statistic)   0.526 0.383  

Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. Excluded instruments: Ending 

stocks and stock variations of maize, wheat and rice; net import of maize, planting and growing season rainfall 

anomalies, and growing season mean temperature. All IVs are lagged once. 

Price variables 

Controlling for climate change and applying instrument variables for possible endogeneity of 

prices, the results indicate that agricultural production is indeed responsive to both own and 

competing crop prices. These supply elasticities are mostly larger than previous aggregate 

estimates (Haile et al., 2016; Roberts & Schlenker, 2009; Subervie, 2008), which can be 

explained by potential omission of climatic variables in previous studies. Cross-price production 

responses are stronger than own price responses in the case of wheat and rice. While own crop 

price volatility, on the other hand, has negligible effect on soybean and rice production, it has 

detrimental impact on production of maize and wheat. In fact, the positive response of wheat 

production to a one standard deviation change in own prices could be offset by an equivalent 

change in wheat price fluctuations. Input price—as proxied by fertilizer index—negatively 

affects production of maize and soybeans but not that of wheat and rice.  

Table 4. Determinants of global wheat production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 

 (rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Standardized 

effect size 

Own crop price 0.042 0.058** 0.206* 0.190** 0.077** 

 

(0.030) (0.029) (0.110) (0.085) 

 Cross-price index 

 

-0.090 

 

-0.809*** -0.276*** 

  

(0.062) 

 

(0.280) 

 Own price volatility -0.377*** -0.338*** 0.288 -2.125*** -0.088*** 

 

(0.094) (0.092) (0.435) (0.586) 

 Fertilizer price index  0.046 0.087** -0.480*** 0.281 0.115 

 

(0.029) (0.037) (0.111) (0.247) 

 Population density  0.008*** 0.008*** 0.008*** 0.010*** 0.947*** 

 

(0.002) (0.002) (0.003) (0.002) 

 Population density squared -4.65e-06*** -4.63e-06*** -6.88e-06 -1.09e-05*** -0.367*** 

 

(0.000) (0.000) (0.000) (0.000) 

 Mean growing tmp. 0.030 0.025 -0.011 -0.034 -0.231 

 

(0.034) (0.034) (0.023) (0.032) 

 Mean growing tmp. squared -0.004** -0.003** -0.001 -0.001 -0.201 

 

(0.002) (0.002) (0.001) (0.001) 

 Squared sowing tmp. deviation -0.0002* -0.0002* 0.0002* -0.00004 -0.006 

 

(0.0001) (0.0001) (0.0001) (0.0001) 

 Squared growing tmp. deviation -0.0001 -0.0001 -0.0002*** -0.0002*** -0.069*** 

 

(0.0002) (0.0002) (0.0001) (0.0001) 

 Mean growing rainfall 0.001 0.001 0.002 -0.001 -0.011 

 

(0.002) (0.002) (0.001) (0.001) 

 Sowing rainfall anomaly -0.115 -0.128 -0.0415 -0.197*** -0.008*** 

 

(0.075) (0.078) (0.066) (0.073)  

Growing  rainfall anomaly -0.209** -0.212** -0.297*** -0.269*** -0.013*** 

 

(0.094) (0.091) (0.051) (0.040) 

 Linear trend 0.044*** 0.0422** 0.021*** 0.010 0.143 
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(0.006) (0.007) (0.004) (0.006) 

 Quadratic trend -4.88e-04*** -4.77e-04*** 3.71e-05 

  

 

(0.0001) (0.0001) (0.0001) 

  Observations 1176 1176 1072 1072 1072 

Underidentification test (Kleibergen-

Paap rk Wald statistic)   79.680 49.820  

Weak identification test (Kleibergen-

Paap rk Wald F statistic)           9.332 15.190  

Overidentification test (p-value of 

Hansen J statistic)   0.339 0.211  

Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. Excluded instruments: Ending 

stocks and stock variations of maize, wheat and rice; net import of maize and wheat, planting and growing season 

rainfall anomalies, and growing season mean temperature (all IVs lagged once).  
 

Climate and weather variables 

Average growing period temperature does not seem to negatively influence production of crops. 

In fact, production of maize and rice actually increases with increasing mean temperature during 

the growing season. It is instead rising temperature values at the two extremes—minimum 

temperature in the case of rice and maximum temperature in the case of maize—that are 

detrimental for crop production. While rising (growing period) temperature does not have 

statistically significant effect on wheat production, its effect on soybean production turns to 

negative beyond a temperature value of 32.5 degrees. Besides these temperature extremes, 

variations in both sowing and growing period temperature have negative effects on crop 

production. McCarl et al. (2008)  have found similar results on the yield effect of temperature 

variation. Precipitation also plays a key role in production of each crop, in particular for rice 

production. Higher mean rainfall (both at planting and growing seasons) in general improves 

agricultural production, whereas rainfall extremes—as measured by SPAI—negatively 

influences production of each crop. As expected for rice, in particular, the number of wet 

growing days and sowing season rainfall are positively associated with higher crop production. 

Unexpected seasonal precipitation extremes are however harmful for rice production as they are 

for the other crops.  

Table 5. Determinants of global soybean production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Standardized 

effect size 

Own crop price 0.185* 0.170** 0.877*** 0.694*** 0.243*** 

 

(0.099) (0.079) (0.176) (0.187) 

 Cross-price index 

 

0.072 

 

0.061 0.017 

  

(0.131) 

 

(0.113) 

 Own price volatility -0.347* -0.377 -1.291** 0.582 0.021 

 

(0.205) (0.247) (0.562) (0.971)  

Fertilizer price index  -0.052 -0.084 -0.492*** -0.605*** -0.201*** 

 

(0.056) (0.065) (0.046) (0.092) 

 Population density  -0.0232*** -0.0232*** -0.0229*** -0.0244*** -1.146*** 

 

(0.007) (0.007) (0.001) (0.001) 

 Population density squared 4.33e-05*** 4.33e-05*** 4.19e-05*** 4.67e-05*** 0.753*** 
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(0.000) (0.000) (0.000) (0.000)  

Mean growing tmp. -0.821 -0.825 -0.151 0.228 0.574 

 

(0.753) (0.752) (0.245) (0.310) 

 Mean growing tmp. squared 0.018 0.019 0.001 -0.007*** -0.751*** 

 

(0.018) (0.018) (0.006) (0.001)  

Squared sowing tmp. deviation 0.0002 0.0002 -0.0005** -0.0005** -0.040** 

 

(0.0004) (0.0004) (0.0002) (0.0002)  

Squared growing tmp. deviation 0.001*** 0.001*** 0.001** 0.001** 0.057** 

 

(0.0004) (0.0004) (0.0005) (0.0004) 

 Mean growing rainfall 0.005* 0.005* 0.003 0.003 0.135 

 

(0.003) (0.003) (0.002) (0.002) 

 Sowing rainfall anomaly -0.342 -0.329 -0.345** -0.384** -0.018** 

 

(0.226) (0.207) (0.151) (0.153) 

 Growing  rainfall anomaly 0.150 0.151 0.133 0.0509 0.002 

 

(0.211) (0.210) (0.112) (0.128) 

 Linear trend 0.058*** 0.059*** 0.064*** 0.054*** 0.666*** 

 

(0.008) (0.008) (0.007) (0.008)  

Quadratic trend -0.0001 -0.0001 0.0001 0.0002** 0.147** 

 

(0.0002) (0.0003) (0.0001) (0.0001) 

 Observations 1363 1363 1259 1259 1259 

Underidentification test (Kleibergen-

Paap rk Wald statistic)   741.72 2811.30  

Weak identification test (Kleibergen-

Paap rk Wald F statistic)           69.96 265.16  

Overidentification test (p-value of 

Hansen J statistic)   0.188 0.3354  

Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. Excluded instruments: Ending 

stocks and stock variations of maize, wheat and rice; net import of maize, planting and growing season rainfall 

anomalies, and growing season mean temperature (all IVs lagged once).  

Population density 

The results on population density are quite interesting, with both the mean and quadratic terms 

being statistically significant in all cases. The effect of more (or cheaper) labor is statistically 

significant and positive on the production of wheat, maize, and rice. However, the effect of 

higher population density on production of these crops—through its effect on expansion or 

urbanization and land degradation— starts gaining more importance after a certain threshold. In 

particular, the effect of population density on crop production is non-linear, switching from 

positive to negative just above 650 people/km
2
 for maize and rice and at slightly higher value for 

wheat (above 900). To put this into perspective, population density in countries such as 

Mauritius is just below the former threshold, whereas Bangladesh (1222) and Malta (1336) are 

already weigh above these turning points. In contrast to the effects on productions of wheat, 

maize, and rice, the effect of population density on soybean production is negative until a 

population density of just above 500 people/km
2
—which is approximately the current population 

density of the Netherlands. Soybean production is largely mechanized in several producer 

countries, and hence soybean production is capital intensive but labor saving. Everything else 

remaining unchanged, cheaper labor may induce switching labor input to production of other 

(labor-intensive) crops (such as horticulture) from soybean production.  
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Table 6. Determinants of global rice production (dependent variable: log (mean production)) 

Variables 

FE FE’ FEIV FEIV’ 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Coeff. 

(rob. SE) 

Standardized 

effect size 

Own crop price 0.013 0.034 0.620*** 1.011*** 0.423*** 

 

(0.035) (0.043) (0.200) (0.384) 

 Cross-price index   -0.084  -2.064*** -0.496*** 

  

(0.063) 

 

(0.683) 

 Own price volatility 0.309*** 0.269*** -0.084 -2.915 -0.109 

 

(0.095) (0.081) (1.027) (2.117) (2.117) 

Fertilizer price index  -0.059 -0.030 -0.614*** 0.385 0.123 

 

(0.050) (0.038) (0.154) (0.294) 

 Population density  0.002 0.002 0.009*** 0.008*** 0.663*** 

 

(0.001) (0.001) (0.002) (0.002)  

Population density squared -7.93e-07 -7.68e-07 -1.14e-05*** -1.16e-05*** -0.396*** 

 

(0.000) (0.000) (0.000) (0.000)  

Mean growing tmp. 0.007 0.019 0.213*** 0.270*** 0.981*** 

 

(0.074) (0.077) (0.069) (0.100)  

Min growing. tmp. -0.109 -0.123 -0.271*** -0.397*** -1.580*** 

 

(0.097) (0.105) (0.060) (0.135)  

Squared sowing tmp. deviation 0.0001 0.0001 -0.0004*** 0.0004 0.136 

 

(0.0001) (0.0001) (0.0001) (0.0003)  

Squared growing tmp. deviation -0.0004 -0.0004 -0.0001 0.00003 0.004 

 

(0.0003) (0.0003) (0.0003) (0.0006)  

Mean growing rainfall 0.0004 0.0004 0.001 0.004*** 0.162*** 

 

(0.0004) (0.0004) (0.001) (0.001)  

Sowing rainfall anomaly -0.056* -0.055* 0.031 -0.338*** -0.018*** 

 

(0.034) (0.033) (0.086) (0.119)  

Growing  rainfall anomaly -0.039* -0.037* -0.202 -0.068 -0.004 

 

(0.024) (0.022) (0.137) (0.352)  

Linear trend 0.021*** 0.021*** 0.029*** 0.015* 0.185* 

 

(0.004) (0.004) (0.007) (0.009)  

Observations 1405 1405 1247 1247 1247 

Underidentification test (Kleibergen-

Paap rk Wald statistic)   192.210 18.890  

Weak identification test (Kleibergen-

Paap rk Wald F statistic)           20.236 9.890  

Overidentification test (p-value of 

Hansen J statistic)   0.312 0.442  

Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. Excluded instruments: Ending 

stocks maize, wheat and rice, stock variations of wheat; net import of wheat and rice, planting and growing season 

rainfall anomalies, and growing season mean temperature (all IVs lagged once).  

Production variance 

Table 7 reports results on the stochastic component of crop production—fluctuations in 

production. Not only do higher prices (in levels) provide incentive for farmers to producer 

more—that is, increase yield or acreage—they also increase the predictability of crop production. 

This is possible as higher crop prices induce agricultural investments in such as irrigation and 

disease-resistant seed varieties that in turn reduce production variance. Not surprisingly, crop 
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price volatility has the opposite effect on production variance. We also find that higher fertilizer 

price has a positive effect on production variability, which is contrary to some of the findings in 

Just and Pope (1979). The effects on production variance of temperature and precipitation 

extremes are mostly positive but statistically significant for soybean and rice production 

(temperature) and for wheat production (precipitation). Production variability has a decreasing 

linear trend, thanks to more and improved early (weather and other risk) warning systems as well 

as other technological progress that reduces potential fluctuations in agricultural production.  

 

 

Table 7. Determinants of variance of global crop production (dependent variable: log (production variance)) 

Variables 

Maize Wheat Soybeans Rice 

Coeff. (rob. SE) Coeff. (rob. SE) 

Coeff. (rob. 

SE) Coeff. (rob. SE) 

Own crop price -1.160*** 0.197** -1.317*** -0.859*** 

 

(0.053) (0.075) (0.095) (0.056) 

Own price volatility 4.875*** 0.978* 1.113* -0.009 

 

(0.565) (0.553) (0.642) (0.385) 

Fertilizer price index 0.811*** 0.114** 0.897*** 0.856*** 

 

(0.046) (0.042) (0.092) (0.058) 

Growing tmp. squared 0.002 0.001 0.004*** 0.004*** 

 

(0.001) (0.001) (0.001) (0.001) 

Growing  tmp. variation 0.001** 0.0002 -0.004*** -0.0002 

 

(0.001) (0.0003) (0.001) (0.001) 

Growing rainfall shock 0.095 0.141** 0.0002 0.057 

 

(0.062) (0.057) (0.138) (0.343) 

Linear trend -0.090*** -0.033*** -0.085*** -0.060*** 

 (0.005) (0.006) (0.007) (0.004) 

Intercept -9.896*** -13.720*** -3.136*** -11.380*** 

 

(1.114) (1.853) (0.892) (1.125) 

N 1330 1072 1259 1247 

Notes: Asterisks ∗, ∗∗, and ∗∗∗ represent the 10%, 5%, and 1% levels of significance. 

 

6. Conclusions 

There is little doubt that the earth’s climate is changing. Although agriculture is one of the 

drivers of this change, it also is one that is severely affected by the change. Climate-resilient 

agriculture is vital for achieving enhanced food security—which is a crucial component of the 

sustainable development goals (SDGs). This paper provides answers to questions that are 

prerequisite for policies that address agriculture and climate change. This paper not only 

evaluates the extent to which climate change affects global production of major staple crops, it 

also identifies specific climate and weather patterns that most harmfully affect crop production.  

This study analyses the determinants of global average crop production for maize, wheat, rice, 

and soybeans over the period 1961–2013. We develop the reduced form empirical framework of 

this paper with the premise that average country crop production is influenced not only by 
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climate factors but also by changes in economic variables. These effects include changes in 

farmers’ crop management practices and land allocation decisions in response to input prices and 

expected output prices and price volatility. Additionally, as compared to previous studies, this 

study analyzes the impact on global crop production variance of price and weather extremes. We 

use IV panel data approach to control for potential endogeneity of input and output prices. It is 

worth to note here that our estimates are global average effects, that is, country variations 

(especially of temperature variables), are only subtly captured with the quadratic terms. It is well 

documented in the literature that the effect of climate change on production has large regional 

variations (Kang & Banga, 2013; Rosenzweig et al., 2001). Our empirical results, however, yield 

estimates that can serve as parameters for projections that look for potential impact of climate 

change on food security with reasonable level of trade among countries. 

We find stronger—than previous literature that do not control for climate change and price 

volatility—and statistically significant supply elasticities for all four crops with respect to own 

crop prices. These short-run supply elasticities range between 0.20 for wheat and to as high as 

unity for rice. With the exception of soybeans, we also find statistically significant and negative 

supply elasticities with respect to an index of competing crop prices. Our results furthermore 

underscore the relevance of output price volatility for the supply of the key global agricultural 

staple crops—especially on production of wheat and maize. Comparing the standardized effect 

sizes of own price and price volatility estimates for wheat and maize production, one can see that 

the effects are on par for wheat while the price volatility effect is only a fifth of the own price 

effect on maize production. 

In agreement with previous studies, we also find that climate change has significant adverse 

effects on production of the world’s key staple crops, through both yield and acreage effects. Our 

findings indicate that higher average temperature during growing seasons of these crops is not all 

bad—having a positive and statistical significant effect on productions of maize and rice. 

Instead, increasing temperature values at the two extremes—higher minimum temperature for 

rice and higher maximum temperature for maize—are detrimental to crop production. Similarly, 

higher average temperature becomes problematic for wheat and soybeans after a certain critical 

level, albeit being statistically insignificant for the former. More importantly, this study finds that 

weather extremes—both in terms of temperature and precipitation shocks— during the growing 

months have significant adverse impacts on the production of the abovementioned food crops. 

This paper also finds negative impacts of price and weather extremes on the stochastic 

component of crop production, that is, on the variance of global crop production. In other words, 

price and weather extremes do not only adversely affect average global food production, they 

also positively contribute to the year-to-year fluctuations of food availability.  

 

Last but not list, we find that the linear time trend is statistically significant and positive in both 

the average production and the production variance estimates of all crops. This result is 

compelling as it shows that improvements in technology and agronomic practices have the 
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capacity to both boost global food production as well as reduce annual fluctuations in food 

availability. Thus, combating climate change using both mitigation and adaptation technologies 

is crucial for global production and hence food security. 
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Endnotes 

                                                           
1
 Please refer to Haile et al. (2016)for further discussion of this concept. 

2
 We apply calories per metric ton of 3340 for wheat, 3560 for maize, 3350 for soybeans and 3600 for rice 

(FAO, 2016). Estimations where equal weights were used also yield similar results.  

3
 These threshold values are in degree Celsius 30 for wheat and 32 for each of the other three crops 

(Thornton & Cramer, 2012). 

4
 The specific IVs included in each crop production equation and statistical test results are indicated in the 

tables that report respective results. 

5
 Summary statistics of all remaining crop production datasets are available upon request. 

6
 To keep tables 3–6 in a reasonable size, we only present estimations of key variables in these tables. A 

complete presentation of estimations can be available upon request. 


